Пластмассы как строительный материал

13.07.2015
Пластмассы как строительный материал

Ценным свойством пластических масс является их малая плотность. Плотность различных широко применяемых пластиков, в том числе пористых поропластов, колеблется от 1 до 2200 кг/м3. Специальные пластики, например, рентгенонепроницаемые с сернокислым барием в качестве наполнителя, могут иметь плотность и значительно выше. В среднем плотность пластмасс, за исключением поропластов, в 2 раза меньше чем алюминия и в 5 - 8 раз меньше плотности стали, меди, свинца. Совершенно очевидно, что даже частичная замена этих металлов, а также силикатных материалов пластмассами дает значительное снижение массы сооружения, правда, в тех случаях когда пластические массы применяют в качестве конструктивного стенового материала, заполнителя в зданиях каркасного типа и материала междуэтажных перекрытий.

Прочностные характеристики пластмасс особенно высоки у пластмасс с листообразными наполнителями. Например, у стеклотекстолита предел прочности при растяжении достигает 2800 кГ/см2 (сталь марки Ст.З 3800 - 4500 кГ/см2), у дельта-древесины - 3500 кГ/см2 и у стекловолокнистого анизотропного материала (СВАМ) - 4600 кГ/см2. Из приведенных данных видно, что слоистые пластики можно применять для несущих нагрузку конструктивных элементов зданий.

Пределы прочности при сжатии этих материалов также достаточны, а именно: у дельта-древесины 2000 кГ/см2, у стеклотекстолита 1600 кГ/см2 и у СВАМ 4000 кГ/см2. Интересны и обнадеживающиe с точки зрения применения пластмасс в строительстве соотношения у этих материалов пределов прочности при сжатии и растяжении, а именно: у дельта-древесины 0,7, у стеклотекстолита 0,6, у СВАМ 0,9; для сравнения - у стали 1, у сосны 0,4, у бетона 0,1.

Таким образом, основные прочностные характеристики пластмасс по пределу прочности при сжатии и растяжении достаточно высоки и превосходят в этом отношении многие строительные материалы силикатной группы.

Прочностные характеристики пористых пластмасс, например мипоры, очень невысоки, но удовлетворяют предъявляемым к ним требованиям.

Важнейший показатель для конструктивных материалов - это коэффициент конструктивного качества материала, т. е. коэффициент, получаемый от деления прочности материала на его плотность. Широкое применение в строительстве материалов с высоким коэффициентом конструктивного качества предопределяет правильное решение одной из основных задач прогрессивного строительства - снижение веса зданий и сооружении. По этому показателю пластмассы занимают первое место.

Коэффициент конструктивного качества кирпичной кладки составляет 0,02 (самый низкий из всех строительных материалов), бетона обыкновенного марки 150 - 0,06, стали марки Ст.З - 0,5, сосны - 0,7, дюралюминия - 1,6, СВАМ - 2,2 и, наконец, дельта-древесины - 2,5. Таким образом, по коэффициенту конструктивного качества слоистые пластики являются непревзойденными до сих пор материалами, из них можно создавать самые прочные и самые легкие конструкции

Теплопроводность плотных пластмасс колеблется от 0,2 до 0,6 ккал/м*ч*град. Наиболее легкие пористые пластмассы имеют теплопроводность всего лишь 0,026, т. е. их коэффициент теплопроводности приближается к коэффициенту теплопроводности воздуха. Совершенно очевидно, что низкая теплопроводность пластмасс позволяет широко использовать их в строительной технике.

Ценным свойством пластических масс является химическая стойкость, обусловленная химической стойкостью полимеров и наполнителей, которые использованы для изготовления пластмасс. Химическую стойкость следует понимать в широком смысле этого термина, включая и стойкость к воде, растворам солей и к органическим растворителям. Особенно стойкими к воздействию кислот и растворов солей являются пластмассы на основе политетрафторэтилена, полиэтилена, полиизобутилена, полистирола, поливинилхлорида. Химически стойкие пластмассы могут быть использованы в качестве строительных материалов при сооружении предприятий химической промышленности, канализационных сетей, а также для изоляции емкостей при хранении агрессивных веществ.

Ценным свойством пластмасс является их способность окрашиваться в различные цвета органическими и неорганическими пигментами. При подборе красителей и пигментов для пластмасс приходится, естественно, учитывать возможное химическое взаимодействие между полимером и красителем.

Хорошая окрашиваемость пластмасс по всей толщине изделия дает возможность избегать периодических покрасок, чего требуют многие другие строительные материалы и что повышает эксплуатационные расходы.

Высокая устойчивость пластмасс к коррозийным воздействиям, ровная и плотная поверхность изделий, получаемая при формовании, также позволяют в ряде случаев отказаться от окрашивания. К качеству окраски пластических масс, применяемых как строительный материал, должны быть предъявлены значительно более высокие требования, чем к качеству окраски пластмасс, используемых, например, в самолетостроении и машиностроении. Это объясняется тяжелыми условиями службы строительных материалов и продолжительностью службы зданий. К покраске их должны быть предъявлены высокие требования в отношении устойчивости к атмосферным воздействиям, в частности к наиболее активному фактору — действию света.

Большой интерес представляет многие прочностные свойства полимеров, такие как их низкая истираемость, т. е. способность сопротивляться истирающим усилиям. Это открывает большие перспективы для широкого применения пластических материалов в конструкциях полов.

Испытания полов на основе полимеров дали хорошие результаты. Так, истираемость поливинилхлоридных плиток для полов составляет 0,05, линолеума глифталевого 0,06 г/см2.